Newton's Universal Law of Gravitation

Newton concluded that just as the Earth attracts any mass, any two objects with mass attract each other.

Universal Law of Gravitation:
Any two objects with mass have a gravitational force between them that is directly proportional to the product of the masses and inversely proportional to the distance between their centers squared:

Newton did not know the constant between these proportions, but later Henry Cavendish calculated it using experimental values of the force between lead spheres. He found the constant to be:

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

The force of attraction between any two objects with mass is:

$$
\text { where: } \begin{aligned}
\mathrm{m} & =\text { masses }(\mathrm{kg}) \\
\mathrm{r} & =\text { distance between } \\
& \text { masses centers }(\mathrm{m}) \\
\mathrm{G} & =6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
\mathrm{~F} & =\text { force }(\mathrm{N})
\end{aligned}
$$

The force is equal and opposite on both masses.
The force is very small unless one of the objects is very large in mass, such as a planet.
ex.
Find the force between you (70kg) and your book (2kg) when 1.5 m apart.
ex.
Find the force between you (70kg) and the Earth.

This force is really your weight. Find the weight of a 70 kg object.
ex.
If the gravitational force between two masses is 100 N and you double mass one, triple mass two, and double the distance, what is the new force?
ex.
If the gravitational force between two masses is 100 N and you double both masses and cut the distance to one third its original value, what is the new force?

