Type II Projectiles

Type II projectiles have both an initial horizontal and an initial vertical velocity.

For example, a golf ball driven from the ground and returning to the ground some distance away (the range).

Because v_{h} is constant, the range can be found by:

How do we find time?

The vertical component finds time.

The time for a type II (and only type II) projectile will always be:

Things to remember about type II projectiles:
$>$ The signs in the equation are vital because they account for motions in different directions (+ is up, - is down).
$>$ The max. height occurs at $1 / 2$ of the total time.
$>$ At the max. height, the vertical velocity changes from + to - .
$>$ The maximum range occurs when the projectile is fired at 45°. This gives the best combination of time in the air and horizontal velocity.
ex.
A projectile is shot with a velocity of $500 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above the horizontal. Ignoring air resistance, determine:
a.) the initial horizontal velocity
b.) the initial vertical velocity
c.) the maximum height
d.) the time until it returns to the ground
e.) the time until the maximum height is reached
f.) the range
ex.
A missile is fired at $1200 \mathrm{~m} / \mathrm{s}$ at an angle of 60° above the horizontal. Ignoring air resistance, determine:
a.) the time of flight
b.) the range
c.) the maximum height

